27 research outputs found

    New strategies for the massive introduction of electric vehicles in the operation and planning of Smart Power Systems

    Full text link
    En el contexto actual, donde el calentamiento climático es cada vez más importante, existe la necesidad de limitar el consumo de combustibles fósiles. De esta manera, el transporte es uno de los sectores en los que más se están generando cambios en cuanto a la sostenibilidad. El vehículo eléctrico aparece como una solución para este cambio paulatino ya que no contamina localmente y su balance energético es muy eficiente. Así, se han propuesto diferentes programas para el crecimiento del vehículo eléctrico en el parque automotor. Sin embargo, el cambio de vehículos de gasolina por vehículos eléctricos genera desafíos en varios aspectos, como el impacto que ocasiona en la red eléctrica una implantación masiva: caídas de tensión, pérdidas de potencia, problemas con la calidad de la electricidad, inversiones importantes, etc. Se han planteado algunas soluciones en la parte operativa, pero muchas de ellas no han tomado en cuenta la flexibilidad de los usuarios, lo cual es muy importante para la adopción de vehículos eléctricos. De igual manera, en muchas ocasiones, en la literatura se asumen valores para ciertas variables (estado de carga, recorrido, tipo de batería, etc) que pueden cambiar según el comportamiento de cada usuario, lo que modificaría las previsiones realizadas. Finalmente, pocos trabajos han estudiado el impacto de lo vehículos eléctricos en redes eléctricas cuya gestión energética es más complicada debido a su aislamiento de una macrored y con alta penetración de energías renovables, como lo son las microredes. En este marco, esta tesis propone un enfoque novedoso en cuanto a la participación de los usuarios de vehículos eléctricos en la operación y planificación de diferentes sistemas eléctricos de potencia. Esta trata de algunos aspectos principales: disminución de costos de carga, participación en servicios de regulación, aprovechamiento de energía renovable, así como la planificación de generación de una microred incorporando vehículos eléctricos. En una primera parte, se presenta un análisis del vehículo eléctrico y su interacción en sistemas de potencia. De igual manera, se presentan los trabajos de investigación relacionados sobre la temática. En base al análisis de dichos trabajos, esta tesis propone una nueva metodología para optimizar la carga de los vehículos eléctricos. Se propone la participación de un nuevo agente del mercado eléctrico, el Agregador de vehículos eléctricos. Tendrá que gestionar la carga de dichos vehículos en una importante zona, coordinar con el operador de la red para evitar fallos y minimizar los costos de carga. De igual manera, se considera la diferente flexibilidad de los usuarios ya qu podrán escoger una tarifa que se adapte a su disponibilidad en espera y pagar el precio por aquello. La metodología ha sido aplicada a un caso de estudio a la red de Quito, Ecuador. Se propone también la participación en servicios de regulación, necesitando esta vez de usuarios que sean más flexibles al dejar su vehículo conectado a la red. Se considera las tarifas de la parte anterior para realizar dicho estudio. De igual manera, se aplicó al caso de estudio de la red de Quito, Ecuador. Con el crecimiento de las energías renovables, como solar y eólica, la gestión de la electricidad se vuelve más compleja. Con vistas a utilizar el exceso de energía renovable, se propone una tarifa de electricidad que permita al agregador de cargar los diferentes vehículos, tomando en cuenta precios bajos en periodos en donde la energía renovable esté en exceso. Finalmente, se plantea a planificación de generación de una microred que incluya la introducción masiva de vehículos eléctricos. Se aplicó al caso de las islas de Santa Cruz y Baltra, Galápagos, Ecuador, estudiando el impacto en los costos y en el medio ambiente de nueva generación y considerando la variación del precio del diésel debido a su incertidumbre.In the current context, where global warming is growing progressively, it is fundamental to limit fossil fuels consumption. Hence, transportation is one of the sectors in which several changes are occurring considering the sustainability. The Electric Vehicle appears as a new solution for this gradual change; it does not pollute locally and its energy's balance is very efficient. So, different programs have been proposed for the growth of electric vehicles in the automotive market. Nevertheless, the change from internal combustion vehicles to electric vehicles generates challenges in several aspects, such as the impact in the electric grid of a massive introduction of electric vehicles: voltage drops, power losses, quality of electricity issues, important investments, among others. Several solutions in operation have been formulated, but most of them do not consider the flexibility of users, which is a significant criterion for the electric vehicle acquisition. Moreover, in several works of the literature, many variables are assumed (stateof- charge, routes, type of battery, etc), which can vary significantly depending on the user, so also the results. Finally, few works have studied the impact of electric vehicles in very complex power systems, as the ones that are isolated from a macrogrid and because of significant penetration of renewable energy sources, such as microgrids. In this context, this thesis proposes a novel approach to the participation of the electric vehicle users in operation and planning of different electric power systems. This thesis is intended to cover various topics: charging costs decrease, regulation services participation, use of an excess of renewable energy, and the power generation planning of a microgrid considering the introduction of electric vehicles. In a first part, an analysis of the electric vehicle and its interaction with power systems is presented. Additionally, the principal works on the topic are summarized. Based on the analysis of these works, this thesis proposes a new methodology for optimizing the charge of electric vehicles. The participation of a new agent of the electricity market, the electric vehicle aggregator, is proposed. It has the ability to manage the charge of the electric vehicles in a zone with significant size, to coordinate with the grid operator in order to avoid troubles and to minimize charging costs. Furthermore, the different flexibility of electric vehicle users is considered because they will choose an EV customer choice product (CCP) that is adapted to their waiting needs and to the cost they can pay. The methodology has been applied to a case study in the grid of Quito, Ecuador. The participation in regulation services has been also considered to discuss this participation in Ancillary services. The CCPs from the part before are considered for performing such study but assuming more involvement from the electric vehicle users. The case study of Quito, Ecuador, was also studied. With the growth of renewable energies, such as solar and wind, the electricity management becomes more complicated. In order to use the excess of renewable energy, an EV charging mechanism for the aggregator is proposed, based on low prices when the renewable energy is in excess. Finally, a power generation planning for a microgrid is proposed, considering the massive introduction of electric vehicles. The case of the Santa Cruz and Baltra islands, Galapagos, Ecuador are studied to determine its costs and environmental impacts, based on diesel costs sensitivity studies to account for its uncertainty.En el context actual, on l'escalfament climàtic és cada vegada més important, hi ha la necessitat de limitar el consum de combustibles fòssils. El transport és un dels sectors en els quals més s'estan generant canvis pel que fa a la sostenibilitat. El vehicle elèctric apareix com una solució per a aquest canvi gradual ja que no contamina localment i el seu balanç energètic és molt eficient. Així, s'han proposat diferents programes per al creixement del vehicle elèctric al parc automotor. No obstant això, el canvi de vehicles de gasolina per vehicles elèctrics generen desafiaments en diversos aspectes, com son l'impacte que ocasiona a la xarxa elèctrica una implantació massiva: caigudes de tensió, pèrdues de potència, problemes amb la qualitat de l'electricitat, inversions importants, disminució de la vida útil dels transformadors, etc. S'han plantejat algunes solucions a la part operativa, però moltes d'elles no han tingut en compte la flexibilitat dels usuaris, la qual cosa és molt important per a l'adopció de vehicles elèctrics. De la mateixa manera, en moltes ocasions, en la literatura s'assumeixen valors per certes variables (estat de càrrega, recorregut, tipus de bateria, etc.) que poden canviar segons el comportament de cada usuari, el que modificaria les previsions realitzades. Finalment indicar que pocs treballs han estudiat l'impacte del que vehicles elèctrics en xarxes elèctriques on la gestió energètica és més complicada a causa del seu aïllament d'una macroxarxa i amb alta penetració d'energies renovables, com ho són les microxarxes. En aquest marc, aquesta tesi proposa un enfocament nou pel que fa a la participació dels usuaris de vehicles elèctrics en l'operació i planificació de diferents sistemes elèctrics de potència. Aquesta tracta alguns aspectes principals: disminució de costos de càrrega, participació en serveis de regulació, aprofitament d'energia renovable, així com la planificació de generació d'una microxarxa incorporant vehicles elèctrics. En una primera part, es presenta una anàlisi del vehicle elèctric i la seva interacció en sistemes de potència. De la mateixa manera, es presenten els treballs de recerca relacionats sobre la temàtica. En base a l'anàlisi d'aquests treballs, aquesta tesi proposa una nova metodologia per optimitzar la càrrega dels vehicles elèctrics. Es proposa la participació d'un nou agent del mercat elèctric, el Agregador de vehicles elèctrics. Haurà de gestionar la càrrega d'aquests vehicles en una important zona, coordinar amb l'operador de la xarxa per evitar fallades i minimitzar els costos de càrrega. De la mateixa manera es considera la diferent flexibilitat dels usuaris ja que podran escollir una tarifa que s'adapti a la seva disponibilitat en espera i pagar el preu per allò. La metodologia ha estat aplicat a un cas d'estudi a la xarxa de Quito, Equador. Es proposa també la participació en serveis de regulació, necessitant aquest cop d'usuaris que siguin més flexibles en deixar el seu vehicle connectat a la xarxa. Es consideren les tarifes de la part anterior per a realitzar dit estudi. De la mateixa manera, es va aplicar al cas d'estudi de la xarxa de Quito, Equador. Amb el creixement de les energies renovables, com solar i eòlica, la gestió de l'electricitat es torna més complexa. Amb vista a utilitzar l'excés d'energia renovable, es proposa un tarifa d'electricitat que permeti a l'agregador de carregar els diferents vehicles, especialment en períodes on l'energia renovable estigui en excés. Finalment, es planteja la planificació de generació d'una microxarxa que inclogui la introducció massiva de vehicles elèctrics. En concret, es va aplicar al cas de la illes de Santa Cruz i Baltra, Galápagos, Equador, estudiant l'impacte de la nova generació en els costos i en el medi ambient i considerant la variació del preu del dièsel, causa de la seva incertesa.Clairand Gómez, JM. (2018). New strategies for the massive introduction of electric vehicles in the operation and planning of Smart Power Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/110971TESI

    Assessment of Technical and Economic Impacts of EV User Behavior on EV Aggregator Smart Charging

    Full text link
    [EN] The increase in global electricity consumption has made energy efficiency a priority for governments. Consequently, there has been a focus on the efficient integration of a massive penetration of electric vehicles (EVs) into energy markets. This study presents an assessment of various strategies for EV aggregators. In this analysis, the smart charging methodology proposed in a previous study is considered. The smart charging technique employs charging power rate modulation and considers user preferences. To adopt several strategies, this study simulates the effect of these actions in a case study of a distribution system from the city of Quito, Ecuador. Different actions are simulated, and the EV aggregator costs and technical conditions are evaluated.All the authors wish to thank Manuel Alcázar Ortega and José Francisco Carbonell Carretero from Universitat Politècnica de València for their contributions to this paper. We also thank the Ministry of Electricity and Renewable Energy of Ecuador (MEER) and Empresa Eléctrica Quito (EEQ) for providing important information for this study.Clairand-Gómez, J.; Rodríguez-García, J.; Álvarez, C. (2020). Assessment of Technical and Economic Impacts of EV User Behavior on EV Aggregator Smart Charging. Journal of Modern Power Systems and Clean Energy (Online). 8(2):356-366. https://doi.org/10.35833/MPCE.2018.000840S3563668

    Smart Charging for Electric Vehicle Aggregators considering Users Preferences

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works[EN] Most of the road transportation currently depends on fossil fuels, which result in significant environmental and health issues. This is being addressed with the deployment of electric vehicles. However, a massive penetration will lead to new technical and economic challenges for power systems. This paper proposes a novel way to account for the effect of this new load and to minimize the negative impacts by providing new tools for the agent responsible of managing the EV charge in some area (EV aggregator). The proposed method allows EV charging at the lowest cost while complying with technical constraints required by Distribution System Operator (DSO) and Transmission System Operator (TSO). Moreover, EV users are able to choose among different customer choice products (CCPs) that meets their needs in terms of charging time. A case study in the city of Quito (Ecuador) is analyzed in the paper where the advantages of the proposed coordinated charging method are quantified. The model presents cost benefits compared to uncoordinated charging while complying with technical constraints. Additionally, the savings using the presented model are at least 5% higher than uncoordinated charging, and can reach more than 50% at best.Clairand-Gómez, J.; Rodríguez-García, J.; Álvarez, C. (2018). Smart Charging for Electric Vehicle Aggregators considering Users Preferences. IEEE Access. 6:1-12. https://doi.org/10.1109/ACCESS.2018.2872725S112

    Non-Linear Control of a DC Microgrid for Electric Vehicle Charging Stations

    Get PDF
    Environmental concerns push governments to invest in renewable energy (RE). They are natural sources with a low carbon footprint and do not pollute locally. However, it is technically difficult to deploy high penetration of RE into the utility grid, due to the generation uncertainties and high installation costs, which are some of the most critical issues in RES use in this area. To address this issue, DC microgrids arise as a solution to integrate local distributed generation (DG) and storage, and to mitigate the issues related to AC/DC and DC/AC converters. Thanks to their main advantages for the power grid and energy consumers, microgrids have gained significant interest in recent years.  By another side, the electric vehicles (EVs) market is expected to grow in the coming years, which represent a new load that must be properly managed to avoid grid issues. Thus, this paper discusses the operation of DC microgrid considering the introduction of EVs. A nonlinear control is presented, including the modeling of charging of EVs. The simulated DC microgrid includes solar PV, a battery, and a supercapacitor. Significant variations from PV generation were included to highlight the performance of the methodology. The results show that the voltage fluctuations are small, which provides the DC microgrid with the required voltage stability. Moreover, it has been demonstrated that DC microgrids can be integrated in isolated locations that are not connected to the main grid in view of the RESs and EVs

    Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid

    Full text link
    [EN] Isolated microgrids, such as islands, rely on fossil fuels for electricity generation and include vehicle fleets, which poses significant environmental challenges. To address this, distributed energy resources based on renewable energy and electric vehicles (EVs) have been deployed in several places. However, they present operational and planning concerns. Hence, the aim of this paper is to propose a two-level microgrid problem. The first problem considers an EV charging strategy that minimizes charging costs and maximizes the renewable energy use. The second level evaluates the impact of this charging strategy on the power generation planning of Santa Cruz Island, Galapagos, Ecuador. This planning model is simulated in HOMER Energy. The results demonstrate the economic and environmental benefits of investing in additional photovoltaic (PV) generation and in the EV charging strategy. Investing in PV and smart charging for EVs could reduce the NPC by 13.58%, but a reduction in the NPC of the EV charging strategy would result in up to 3.12%.Clairand, J.; Álvarez, C.; Rodríguez-García, J.; Escrivá-Escrivá, G. (2020). Impact of Electric Vehicle Charging Strategy on the Long-Term Planning of an Isolated Microgrid. Energies. 13(13):1-18. https://doi.org/10.3390/en13133455S1181313Arriaga, M., Canizares, C. A., & Kazerani, M. (2013). Renewable Energy Alternatives for Remote Communities in Northern Ontario, Canada. IEEE Transactions on Sustainable Energy, 4(3), 661-670. doi:10.1109/tste.2012.2234154Eras-Almeida, A. A., & Egido-Aguilera, M. A. (2019). Hybrid renewable mini-grids on non-interconnected small islands: Review of case studies. Renewable and Sustainable Energy Reviews, 116, 109417. doi:10.1016/j.rser.2019.109417Mahmud, M. A. P., Huda, N., Farjana, S. H., & Lang, C. (2019). Techno-Economic Operation and Environmental Life-Cycle Assessment of a Solar PV-Driven Islanded Microgrid. IEEE Access, 7, 111828-111839. doi:10.1109/access.2019.2927653Huy, P. D., Ramachandaramurthy, V. K., Yong, J. Y., Tan, K. M., & Ekanayake, J. B. (2020). Optimal placement, sizing and power factor of distributed generation: A comprehensive study spanning from the planning stage to the operation stage. Energy, 195, 117011. doi:10.1016/j.energy.2020.117011Bahaj, A. S., & James, P. A. B. (2019). Electrical Minigrids for Development: Lessons From the Field. Proceedings of the IEEE, 107(9), 1967-1980. doi:10.1109/jproc.2019.2924594Nikmehr, N. (2020). Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs. Energy, 199, 117440. doi:10.1016/j.energy.2020.117440Clement-Nyns, K., Haesen, E., & Driesen, J. (2010). The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid. IEEE Transactions on Power Systems, 25(1), 371-380. doi:10.1109/tpwrs.2009.2036481Wang, G., Xu, Z., Wen, F., & Wong, K. P. (2013). Traffic-Constrained Multiobjective Planning of Electric-Vehicle Charging Stations. IEEE Transactions on Power Delivery, 28(4), 2363-2372. doi:10.1109/tpwrd.2013.2269142Rezaeimozafar, M., Eskandari, M., Amini, M. H., Moradi, M. H., & Siano, P. (2020). A Bi-Layer Multi-Objective Techno-Economical Optimization Model for Optimal Integration of Distributed Energy Resources into Smart/Micro Grids. Energies, 13(7), 1706. doi:10.3390/en13071706Clairand, J.-M., Rodr韌uez-Garc韆, J., & 羖varez-Bel, C. (2020). Assessment of Technical and Economic Impacts of EV User Behavior on EV Aggregator Smart Charging. Journal of Modern Power Systems and Clean Energy, 8(2), 356-366. doi:10.35833/mpce.2018.000840Yang, H., Pan, H., Luo, F., Qiu, J., Deng, Y., Lai, M., & Dong, Z. Y. (2017). Operational Planning of Electric Vehicles for Balancing Wind Power and Load Fluctuations in a Microgrid. IEEE Transactions on Sustainable Energy, 8(2), 592-604. doi:10.1109/tste.2016.2613941Savio, D. A., Juliet, V. A., Chokkalingam, B., Padmanaban, S., Holm-Nielsen, J. B., & Blaabjerg, F. (2019). Photovoltaic Integrated Hybrid Microgrid Structured Electric Vehicle Charging Station and Its Energy Management Approach. Energies, 12(1), 168. doi:10.3390/en12010168Jin, C., Sheng, X., & Ghosh, P. (2014). Optimized Electric Vehicle Charging With Intermittent Renewable Energy Sources. IEEE Journal of Selected Topics in Signal Processing, 8(6), 1063-1072. doi:10.1109/jstsp.2014.2336624Honarmand, M., Zakariazadeh, A., & Jadid, S. (2014). Integrated scheduling of renewable generation and electric vehicles parking lot in a smart microgrid. Energy Conversion and Management, 86, 745-755. doi:10.1016/j.enconman.2014.06.044Zhang, T., Chen, W., Han, Z., & Cao, Z. (2014). Charging Scheduling of Electric Vehicles With Local Renewable Energy Under Uncertain Electric Vehicle Arrival and Grid Power Price. IEEE Transactions on Vehicular Technology, 63(6), 2600-2612. doi:10.1109/tvt.2013.2295591Dhundhara, S., Verma, Y. P., & Williams, A. (2018). Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems. Energy Conversion and Management, 177, 122-142. doi:10.1016/j.enconman.2018.09.030Kumar, A., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2018). Multiyear Load Growth Based Techno-Financial Evaluation of a Microgrid for an Academic Institution. IEEE Access, 6, 37533-37555. doi:10.1109/access.2018.2849411Abdin, Z., & Mérida, W. (2019). Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis. Energy Conversion and Management, 196, 1068-1079. doi:10.1016/j.enconman.2019.06.068Hafez, O., & Bhattacharya, K. (2012). Optimal planning and design of a renewable energy based supply system for microgrids. Renewable Energy, 45, 7-15. doi:10.1016/j.renene.2012.01.087Chade, D., Miklis, T., & Dvorak, D. (2015). Feasibility study of wind-to-hydrogen system for Arctic remote locations – Grimsey island case study. Renewable Energy, 76, 204-211. doi:10.1016/j.renene.2014.11.023Abo-Elyousr, F. K., & Elnozahy, A. (2018). Bi-objective economic feasibility of hybrid micro-grid systems with multiple fuel options for islanded areas in Egypt. Renewable Energy, 128, 37-56. doi:10.1016/j.renene.2018.05.066Das, I., & Canizares, C. A. (2019). Renewable Energy Integration in Diesel-Based Microgrids at the Canadian Arctic. Proceedings of the IEEE, 107(9), 1838-1856. doi:10.1109/jproc.2019.2932743Ayodele, E., Misra, S., Damasevicius, R., & Maskeliunas, R. (2019). Hybrid microgrid for microfinance institutions in rural areas – A field demonstration in West Africa. Sustainable Energy Technologies and Assessments, 35, 89-97. doi:10.1016/j.seta.2019.06.009Aziz, A. S., Tajuddin, M. F. N., Adzman, M. R., Mohammed, M. F., & Ramli, M. A. M. (2020). Feasibility analysis of grid-connected and islanded operation of a solar PV microgrid system: A case study of Iraq. Energy, 191, 116591. doi:10.1016/j.energy.2019.116591Elkadeem, M. R., Wang, S., Azmy, A. M., Atiya, E. G., Ullah, Z., & Sharshir, S. W. (2020). A systematic decision-making approach for planning and assessment of hybrid renewable energy-based microgrid with techno-economic optimization: A case study on an urban community in Egypt. Sustainable Cities and Society, 54, 102013. doi:10.1016/j.scs.2019.102013Jimenez Zabalaga, P., Cardozo, E., Choque Campero, L. A., & Araoz Ramos, J. A. (2020). Performance Analysis of a Stirling Engine Hybrid Power System. Energies, 13(4), 980. doi:10.3390/en13040980Masrur, H., Howlader, H. O. R., Elsayed Lotfy, M., Khan, K. R., Guerrero, J. M., & Senjyu, T. (2020). Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh. Sustainability, 12(7), 2880. doi:10.3390/su12072880Tuballa, M. L., & Abundo, M. L. (2018). Prospects of a solar-diesel-grid energy system for Silliman University, Dumaguete City, Philippines. International Journal of Green Energy, 15(12), 704-714. doi:10.1080/15435075.2018.1525555Adefarati, T., & Obikoya, G. . (2019). Techno-economic evaluation of a grid-connected microgrid system. International Journal of Green Energy, 16(15), 1497-1517. doi:10.1080/15435075.2019.1671421Donado, K., Navarro, L., Quintero M., C. G., & Pardo, M. (2019). HYRES: A Multi-Objective Optimization Tool for Proper Configuration of Renewable Hybrid Energy Systems. Energies, 13(1), 26. doi:10.3390/en13010026Lombardi, F., Riva, F., Sacchi, M., & Colombo, E. (2019). Enabling combined access to electricity and clean cooking with PV-microgrids: new evidences from a high-resolution model of cooking loads. Energy for Sustainable Development, 49, 78-88. doi:10.1016/j.esd.2019.01.005Fulhu, M., Mohamed, M., & Krumdieck, S. (2019). Voluntary demand participation (VDP) for security of essential energy activities in remote communities with case study in Maldives. Energy for Sustainable Development, 49, 27-38. doi:10.1016/j.esd.2019.01.002He, L., Zhang, S., Chen, Y., Ren, L., & Li, J. (2018). Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China. Renewable and Sustainable Energy Reviews, 93, 631-641. doi:10.1016/j.rser.2018.05.053Veilleux, G., Potisat, T., Pezim, D., Ribback, C., Ling, J., Krysztofiński, A., … Chucherd, S. (2020). Techno-economic analysis of microgrid projects for rural electrification: A systematic approach to the redesign of Koh Jik off-grid case study. Energy for Sustainable Development, 54, 1-13. doi:10.1016/j.esd.2019.09.007Nnaji, E. C., Adgidzi, D., Dioha, M. O., Ewim, D. R. E., & Huan, Z. (2019). Modelling and management of smart microgrid for rural electrification in sub-saharan Africa: The case of Nigeria. The Electricity Journal, 32(10), 106672. doi:10.1016/j.tej.2019.106672Kovačević Markov, K., & Rajaković, N. (2019). Multi-energy microgrids with ecotourism purposes: The impact of the power market and the connection line. Energy Conversion and Management, 196, 1105-1112. doi:10.1016/j.enconman.2019.05.048Sarkar, T., Bhattacharjee, A., Samanta, H., Bhattacharya, K., & Saha, H. (2019). Optimal design and implementation of solar PV-wind-biogas-VRFB storage integrated smart hybrid microgrid for ensuring zero loss of power supply probability. Energy Conversion and Management, 191, 102-118. doi:10.1016/j.enconman.2019.04.025Clairand, J.-M., Arriaga, M., Canizares, C. A., & Alvarez-Bel, C. (2019). Power Generation Planning of Galapagos’ Microgrid Considering Electric Vehicles and Induction Stoves. IEEE Transactions on Sustainable Energy, 10(4), 1916-1926. doi:10.1109/tste.2018.2876059Hafez, O., & Bhattacharya, K. (2017). Optimal design of electric vehicle charging stations considering various energy resources. Renewable Energy, 107, 576-589. doi:10.1016/j.renene.2017.01.066Yoon, S.-G., & Kang, S.-G. (2017). Economic Microgrid Planning Algorithm with Electric Vehicle Charging Demands. Energies, 10(10), 1487. doi:10.3390/en10101487Eras-Almeida, A., Egido-Aguilera, M., Blechinger, P., Berendes, S., Caamaño, E., & García-Alcalde, E. (2020). Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz. Sustainability, 12(6), 2282. doi:10.3390/su12062282Clairand, J.-M., Rodríguez-García, J., & Álvarez-Bel, C. (2018). Electric Vehicle Charging Strategy for Isolated Systems with High Penetration of Renewable Generation. Energies, 11(11), 3188. doi:10.3390/en11113188Gamarra, C., & Guerrero, J. M. (2015). Computational optimization techniques applied to microgrids planning: A review. Renewable and Sustainable Energy Reviews, 48, 413-424. doi:10.1016/j.rser.2015.04.025HOMER Software https://www.homerenergy.com/Clairand Gómez, J. M. (s. f.). New strategies for the massive introduction of electric vehicles in the operation and planning of Smart Power Systems. doi:10.4995/thesis/10251/110971Pliego Tarifario Para Las Empresas Eléctricas. Technical Report https://www.cnelep.gob.ec/wp-content/uploads/2016/11/Pliego-Tarifarios-2016-Actualizado.pdfKhayatian, A., Barati, M., & Lim, G. J. (2018). Integrated Microgrid Expansion Planning in Electricity Market With Uncertainty. IEEE Transactions on Power Systems, 33(4), 3634-3643. doi:10.1109/tpwrs.2017.2768302Z Electric Vehicle: The Performance and Value Leader in Electric Vehicles https://zelectricvehicle.in/K9 Electric Transit Bus https://en.byd.com/wp-content/uploads/2019/07/4504-byd-transit-cut-sheets_k9-40_lr.pdfKia Soul EV https://www.kia.com/worldwide/vehicles/e-soul.doIluminando al Patrimonio Natural de la Humanidad. Technical Report http://www.elecgalapagos.com.ec/pdf2015/M09/Revistainstitucional.pdfProyecto Eólico San Cristóbal Galápagos—Ecuador. Technical Report https://www.slideserve.com/peggy/proyecto-e-lico-san-crist-bal-islas-gal-pagosPlan de Trabajo Anual—POA 2015. Technical Report http://www.elecgalapagos.com.ec/pdf2015/KO7/PlanOperativoAnual-POA.pdfSierra, J. C. (2016). Estimating road transport fuel consumption in Ecuador. Energy Policy, 92, 359-368. doi:10.1016/j.enpol.2016.02.008Registro Oficial. Technical Report 386 http://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2012/09/SPTMF_resol_carga_gye-galapagos.pdfProyectos http://www.elecgalapagos.com.ec/proyectosPlan Galapagos. Technical Report http://extwprlegs1.fao.org/docs/pdf/ecu166016.pdfFicha Informativa de Proyecto 2016 Proyecto Fotovoltaico en la Isla Baltra—Archipiélago de Galápagos. Líder. Technical Report http://euroclimaplus.org/intranet/_documentos/repositorio/01Bienal%20ONUCambio%20Clim%C3%A1tico_2016Ecuador.pdfThe Wind Power. U57 https://www.thewindpower.net/turbine_media_en_460_unison_u57.phpSupporting the Energy Revolution https://www.vaisala.com/en/industries-innovation/renewablePerspectiva y Expansión del Sistema Eléctrico Ecuatoriano, Technical Report http://www.regulacionelectrica.gob.ec/plan-maestro-de-electrificacion-2013-2022

    Non-Linear Control of a DC Microgrid for Electric Vehicle Charging Stations

    Full text link
    [EN] Environmental concerns push governments to invest in renewable energy (RE). They are natural sources with a low carbon footprint and do not pollute locally. However, it is technically difficult to deploy high penetration of RE into the utility grid, due to the generation uncertainties and high installation costs, which are some of the most critical issues in RES use in this area. To address this issue, DC microgrids arise as a solution to integrate local distributed generation (DG) and storage, and to mitigate the issues related to AC/DC and DC/AC converters. Thanks to their main advantages for the power grid and energy consumers, microgrids have gained significant interest in recent years. By another side, the electric vehicles (EVs) market is expected to grow in the coming years, which represent a new load that must be properly managed to avoid grid issues. Thus, this paper discusses the operation of DC microgrid considering the introduction of EVs. A nonlinear control is presented, including the modeling of charging of EVs. The simulated DC microgrid includes solar PV, a battery, and a supercapacitor. Significant variations from PV generation were included to highlight the performance of the methodology. The results show that the voltage fluctuations are small, which provides the DC microgrid with the required voltage stability. Moreover, it has been demonstrated that DC microgrids can be integrated in isolated locations that are not connected to the main grid in view of the RESs and EVs.This work belongs to the project SIS.JCG.19.03 from Universidad de las Américas - EcuadorBenamar, A.; Travaillé, P.; Clairand Gómez, J.; Escrivá-Escrivá, G. (2020). Non-Linear Control of a DC Microgrid for Electric Vehicle Charging Stations. International Journal on Advanced Science, Engineering and Information Technology. 10(2):593-598. https://doi.org/10.18517/ijaseit.10.2.10815S59359810

    Power Generation Planning of Galapagos Microgrid Considering Electric Vehicles and Induction Stoves

    Full text link
    [EN] Islands located far away from the mainland and remote communities depend on isolated microgrids based on diesel fuel, which results in significant environmental and cost issues. This is currently being addressed by integrating renewable energy sources (RESs). Thus, this paper discusses the generation planning problem in diesel-based island microgrids with RES, considering the electrification of transportation and cooking to reduce their environmental impact, and applied to the communities of Santa Cruz and Baltra in the Galapagos Islands in Ecuador. A baseline model is developed in HOMER for the existing system with diesel generation and RES, while the demand of electric vehicles and induction stoves is calculated from vehicle driving data and cooking habits in the islands, respectively. The integration of these new loads into the island microgrid is studied to determine its costs and environmental impacts, based on diesel cost sensitivity studies to account for its uncertainty. The results demonstrate the economic and environmental benefits of investing in RES for Galapagos' microgrid, to electrify the local transportation and cooking system.J.-M. Clairand would like to thank Universidad de las Americas for funding his visit to the University of Waterloo. The authors would like to thank W. Mendieta, F. Calero, and E. Vera from the University of Waterloo for their valuable comments and helpful suggestions.Clairand-Gómez, J.; Arriaga, M.; Cañizares, CA.; Álvarez, C. (2019). Power Generation Planning of Galapagos Microgrid Considering Electric Vehicles and Induction Stoves. IEEE Transactions on Sustainable Energy. 10(4):1916-1926. https://doi.org/10.1109/TSTE.2018.2876059S1916192610

    Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids

    Full text link
    [EN] Microgrids have emerged as a solution to address new challenges in power systems with the integration of distributed energy resources (DER). Inverter-based microgrids (IBMG) need to implement proper control systems to avoid stability and reliability issues. Thus, several researchers have introduced multi-objective control strategies for distributed generation on IBMG. This paper presents a review of the different approaches that have been proposed by several authors of multi-objective control. This work describes the main features of the inverter as a key component of microgrids. Details related to accomplishing efficient generation from a control systems' view have been observed. This study addresses the potential of multi-objective control to overcome conflicting objectives with balanced results. Finally, this paper shows future trends in control objectives and discussion of the different multi-objective approaches.Gonzales-Zurita, Ó.; Clairand, J.; Peñalvo-López, E.; Escrivá-Escrivá, G. (2020). Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids. Energies. 13(13):1-29. https://doi.org/10.3390/en13133483S1291313Ross, M., Abbey, C., Bouffard, F., & Joos, G. (2015). Multiobjective Optimization Dispatch for Microgrids With a High Penetration of Renewable Generation. IEEE Transactions on Sustainable Energy, 6(4), 1306-1314. doi:10.1109/tste.2015.2428676Murty, V. V. S. N., & Kumar, A. (2020). Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Protection and Control of Modern Power Systems, 5(1). doi:10.1186/s41601-019-0147-zKatircioğlu, S., Abasiz, T., Sezer, S., & Katırcıoglu, S. (2019). Volatility of the alternative energy input prices and spillover effects: a VAR [MA]-MGARCH in BEKK approach for the Turkish economy. Environmental Science and Pollution Research, 26(11), 10738-10745. doi:10.1007/s11356-019-04531-5Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., … Hatziargyriou, N. D. (2014). Trends in Microgrid Control. IEEE Transactions on Smart Grid, 5(4), 1905-1919. doi:10.1109/tsg.2013.2295514Akinyele, D., Belikov, J., & Levron, Y. (2018). Challenges of Microgrids in Remote Communities: A STEEP Model Application. Energies, 11(2), 432. doi:10.3390/en11020432Benamar, A., Travaillé, P., Clairand, J.-M., & Escrivá-Escrivá, G. (2020). Non-Linear Control of a DC Microgrid for Electric Vehicle Charging Stations. International Journal on Advanced Science, Engineering and Information Technology, 10(2), 593. doi:10.18517/ijaseit.10.2.10815Lakshmi, M., & Hemamalini, S. (2018). Nonisolated High Gain DC–DC Converter for DC Microgrids. IEEE Transactions on Industrial Electronics, 65(2), 1205-1212. doi:10.1109/tie.2017.2733463Yin, C., Wu, H., Locment, F., & Sechilariu, M. (2017). Energy management of DC microgrid based on photovoltaic combined with diesel generator and supercapacitor. Energy Conversion and Management, 132, 14-27. doi:10.1016/j.enconman.2016.11.018Chen, D., Xu, Y., & Huang, A. Q. (2017). Integration of DC Microgrids as Virtual Synchronous Machines Into the AC Grid. IEEE Transactions on Industrial Electronics, 64(9), 7455-7466. doi:10.1109/tie.2017.2674621Abhinav, S., Schizas, I. D., Ferrese, F., & Davoudi, A. (2017). Optimization-Based AC Microgrid Synchronization. IEEE Transactions on Industrial Informatics, 13(5), 2339-2349. doi:10.1109/tii.2017.2702623Liu, Z., Su, M., Sun, Y., Li, L., Han, H., Zhang, X., & Zheng, M. (2019). Optimal criterion and global/sub-optimal control schemes of decentralized economical dispatch for AC microgrid. International Journal of Electrical Power & Energy Systems, 104, 38-42. doi:10.1016/j.ijepes.2018.06.045Khatibzadeh, A., Besmi, M., Mahabadi, A., & Reza Haghifam, M. (2017). Multi-Agent-Based Controller for Voltage Enhancement in AC/DC Hybrid Microgrid Using Energy Storages. Energies, 10(2), 169. doi:10.3390/en10020169Asghar, F., Talha, M., & Kim, S. (2017). Robust Frequency and Voltage Stability Control Strategy for Standalone AC/DC Hybrid Microgrid. Energies, 10(6), 760. doi:10.3390/en10060760Lotfi, H., & Khodaei, A. (2017). Hybrid AC/DC microgrid planning. Energy, 118, 37-46. doi:10.1016/j.energy.2016.12.015Kerdphol, T., Rahman, F., & Mitani, Y. (2018). Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration. Energies, 11(4), 981. doi:10.3390/en11040981Rodrigues, Y. R., Zambroni de Souza, A. C., & Ribeiro, P. F. (2018). An inclusive methodology for Plug-in electrical vehicle operation with G2V and V2G in smart microgrid environments. International Journal of Electrical Power & Energy Systems, 102, 312-323. doi:10.1016/j.ijepes.2018.04.037Ghosh, S., & Chattopadhyay, S. (2020). Three-Loop-Based Universal Control Architecture for Decentralized Operation of Multiple Inverters in an Autonomous Grid-Interactive Microgrid. IEEE Transactions on Industry Applications, 56(2), 1966-1979. doi:10.1109/tia.2020.2964746Mohapatra, S. R., & Agarwal, V. (2020). Model Predictive Control for Flexible Reduction of Active Power Oscillation in Grid-Tied Multilevel Inverters Under Unbalanced and Distorted Microgrid Conditions. IEEE Transactions on Industry Applications, 56(2), 1107-1115. doi:10.1109/tia.2019.2957480Ziouani, I., Boukhetala, D., Darcherif, A.-M., Amghar, B., & El Abbassi, I. (2018). Hierarchical control for flexible microgrid based on three-phase voltage source inverters operated in parallel. International Journal of Electrical Power & Energy Systems, 95, 188-201. doi:10.1016/j.ijepes.2017.08.027Golshannavaz, S., & Mortezapour, V. (2018). A generalized droop control approach for islanded DC microgrids hosting parallel-connected DERs. Sustainable Cities and Society, 36, 237-245. doi:10.1016/j.scs.2017.09.038Safa, A., Madjid Berkouk, E. L., Messlem, Y., & Gouichiche, A. (2018). A robust control algorithm for a multifunctional grid tied inverter to enhance the power quality of a microgrid under unbalanced conditions. International Journal of Electrical Power & Energy Systems, 100, 253-264. doi:10.1016/j.ijepes.2018.02.042Andishgar, M. H., Gholipour, E., & Hooshmand, R. (2017). An overview of control approaches of inverter-based microgrids in islanding mode of operation. Renewable and Sustainable Energy Reviews, 80, 1043-1060. doi:10.1016/j.rser.2017.05.267Li, Z., Zang, C., Zeng, P., Yu, H., Li, S., & Bian, J. (2017). Control of a Grid-Forming Inverter Based on Sliding-Mode and Mixed H2/H{H_2}/{H_\infty } Control. IEEE Transactions on Industrial Electronics, 64(5), 3862-3872. doi:10.1109/tie.2016.2636798Hossain, M. A., Pota, H. R., Squartini, S., & Abdou, A. F. (2019). Modified PSO algorithm for real-time energy management in grid-connected microgrids. Renewable Energy, 136, 746-757. doi:10.1016/j.renene.2019.01.005Shokoohi, S., Golshannavaz, S., Khezri, R., & Bevrani, H. (2018). Intelligent secondary control in smart microgrids: an on-line approach for islanded operations. Optimization and Engineering, 19(4), 917-936. doi:10.1007/s11081-018-9382-9Safari, A., Babaei, F., & Farrokhifar, M. (2019). A load frequency control using a PSO-based ANN for micro-grids in the presence of electric vehicles. International Journal of Ambient Energy, 42(6), 688-700. doi:10.1080/01430750.2018.1563811Miveh, M. R., Rahmat, M. F., Ghadimi, A. A., & Mustafa, M. W. (2016). Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review. Renewable and Sustainable Energy Reviews, 54, 1592-1610. doi:10.1016/j.rser.2015.10.079Rokrok, E., Shafie-khah, M., & Catalão, J. P. S. (2018). Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation. Renewable and Sustainable Energy Reviews, 82, 3225-3235. doi:10.1016/j.rser.2017.10.022Bouzid, A. M., Guerrero, J. M., Cheriti, A., Bouhamida, M., Sicard, P., & Benghanem, M. (2015). A survey on control of electric power distributed generation systems for microgrid applications. Renewable and Sustainable Energy Reviews, 44, 751-766. doi:10.1016/j.rser.2015.01.016Vásquez, V., Ortega, L. M., Romero, D., Ortega, R., Carranza, O., & Rodríguez, J. J. (2017). Comparison of methods for controllers design of single phase inverter operating in island mode in a microgrid: Review. Renewable and Sustainable Energy Reviews, 76, 256-267. doi:10.1016/j.rser.2017.03.060Shen, X., Wang, H., Li, J., Su, Q., & Gao, L. (2019). Distributed Secondary Voltage Control of Islanded Microgrids Based on RBF-Neural-Network Sliding-Mode Technique. IEEE Access, 7, 65616-65623. doi:10.1109/access.2019.2915509Arbab-Zavar, B., Palacios-Garcia, E., Vasquez, J., & Guerrero, J. (2019). Smart Inverters for Microgrid Applications: A Review. Energies, 12(5), 840. doi:10.3390/en12050840Bullich-Massagué, E., Díaz-González, F., Aragüés-Peñalba, M., Girbau-Llistuella, F., Olivella-Rosell, P., & Sumper, A. (2018). Microgrid clustering architectures. Applied Energy, 212, 340-361. doi:10.1016/j.apenergy.2017.12.048Kerdphol, T., Rahman, F., Mitani, Y., Hongesombut, K., & Küfeoğlu, S. (2017). Virtual Inertia Control-Based Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration. Sustainability, 9(5), 773. doi:10.3390/su9050773Hajiakbari Fini, M., & Hamedani Golshan, M. E. (2018). Determining optimal virtual inertia and frequency control parameters to preserve the frequency stability in islanded microgrids with high penetration of renewables. Electric Power Systems Research, 154, 13-22. doi:10.1016/j.epsr.2017.08.007Jung, J., & Villaran, M. (2017). Optimal planning and design of hybrid renewable energy systems for microgrids. Renewable and Sustainable Energy Reviews, 75, 180-191. doi:10.1016/j.rser.2016.10.061Baharizadeh, M., Karshenas, H. R., & Guerrero, J. M. (2018). An improved power control strategy for hybrid AC-DC microgrids. International Journal of Electrical Power & Energy Systems, 95, 364-373. doi:10.1016/j.ijepes.2017.08.036Serban, I., & Ion, C. P. (2017). Microgrid control based on a grid-forming inverter operating as virtual synchronous generator with enhanced dynamic response capability. International Journal of Electrical Power & Energy Systems, 89, 94-105. doi:10.1016/j.ijepes.2017.01.009Tavakoli, M., Shokridehaki, F., Marzband, M., Godina, R., & Pouresmaeil, E. (2018). A two stage hierarchical control approach for the optimal energy management in commercial building microgrids based on local wind power and PEVs. Sustainable Cities and Society, 41, 332-340. doi:10.1016/j.scs.2018.05.035Cagnano, A., De Tuglie, E., & Cicognani, L. (2017). Prince — Electrical Energy Systems Lab. Electric Power Systems Research, 148, 10-17. doi:10.1016/j.epsr.2017.03.011Zhang, H., Meng, W., Qi, J., Wang, X., & Zheng, W. X. (2019). Distributed Load Sharing Under False Data Injection Attack in an Inverter-Based Microgrid. IEEE Transactions on Industrial Electronics, 66(2), 1543-1551. doi:10.1109/tie.2018.2793241Yang, L., Hu, Z., Xie, S., Kong, S., & Lin, W. (2019). Adjustable virtual inertia control of supercapacitors in PV-based AC microgrid cluster. Electric Power Systems Research, 173, 71-85. doi:10.1016/j.epsr.2019.04.011Rahman, F. S., Kerdphol, T., Watanabe, M., & Mitani, Y. (2019). Optimization of virtual inertia considering system frequency protection scheme. Electric Power Systems Research, 170, 294-302. doi:10.1016/j.epsr.2019.01.025Farrokhabadi, M., Canizares, C. A., Simpson-Porco, J. W., Nasr, E., Fan, L., Mendoza-Araya, P. A., … Reilly, J. (2020). Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems, 35(1), 13-29. doi:10.1109/tpwrs.2019.2925703Yoldaş, Y., Önen, A., Muyeen, S. M., Vasilakos, A. V., & Alan, İ. (2017). Enhancing smart grid with microgrids: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 72, 205-214. doi:10.1016/j.rser.2017.01.064Rajesh, K. S., Dash, S. S., Rajagopal, R., & Sridhar, R. (2017). A review on control of ac microgrid. Renewable and Sustainable Energy Reviews, 71, 814-819. doi:10.1016/j.rser.2016.12.106Marzal, S., Salas, R., González-Medina, R., Garcerá, G., & Figueres, E. (2018). Current challenges and future trends in the field of communication architectures for microgrids. Renewable and Sustainable Energy Reviews, 82, 3610-3622. doi:10.1016/j.rser.2017.10.101Singh, A., & Suhag, S. (2018). Trends in Islanded Microgrid Frequency Regulation – A Review. Smart Science, 7(2), 91-115. doi:10.1080/23080477.2018.1540380Hou, X., Sun, Y., Lu, J., Zhang, X., Koh, L. H., Su, M., & Guerrero, J. M. (2018). Distributed Hierarchical Control of AC Microgrid Operating in Grid-Connected, Islanded and Their Transition Modes. IEEE Access, 6, 77388-77401. doi:10.1109/access.2018.2882678SHI, R., ZHANG, X., HU, C., XU, H., GU, J., & CAO, W. (2017). Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids. Journal of Modern Power Systems and Clean Energy, 6(3), 482-494. doi:10.1007/s40565-017-0347-3Toub, M., Bijaieh, M. M., Weaver, W. W., III, R. D. R., Maaroufi, M., & Aniba, G. (2019). Droop Control in DQ Coordinates for Fixed Frequency Inverter-Based AC Microgrids. Electronics, 8(10), 1168. doi:10.3390/electronics8101168Shuai, Z., Fang, J., Ning, F., & Shen, Z. J. (2018). Hierarchical structure and bus voltage control of DC microgrid. Renewable and Sustainable Energy Reviews, 82, 3670-3682. doi:10.1016/j.rser.2017.10.096Agundis-Tinajero, G., Segundo-Ramírez, J., Visairo-Cruz, N., Savaghebi, M., Guerrero, J. M., & Barocio, E. (2019). Power flow modeling of islanded AC microgrids with hierarchical control. International Journal of Electrical Power & Energy Systems, 105, 28-36. doi:10.1016/j.ijepes.2018.08.002Ali, A., Li, W., Hussain, R., He, X., Williams, B., & Memon, A. (2017). Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China. Sustainability, 9(7), 1146. doi:10.3390/su9071146Cui, Y., Geng, Z., Zhu, Q., & Han, Y. (2017). Review: Multi-objective optimization methods and application in energy saving. Energy, 125, 681-704. doi:10.1016/j.energy.2017.02.174Yazdi, F., & Hosseinian, S. H. (2019). A novel «Smart Branch» for power quality improvement in microgrids. International Journal of Electrical Power & Energy Systems, 110, 161-170. doi:10.1016/j.ijepes.2019.02.026Bassey, O., Butler-Purry, K. L., & Chen, B. (2020). Dynamic Modeling of Sequential Service Restoration in Islanded Single Master Microgrids. IEEE Transactions on Power Systems, 35(1), 202-214. doi:10.1109/tpwrs.2019.2929268Chang, E.-C. (2018). Study and Application of Intelligent Sliding Mode Control for Voltage Source Inverters. Energies, 11(10), 2544. doi:10.3390/en11102544Das, D., Gurrala, G., & Shenoy, U. J. (2018). Linear Quadratic Regulator-Based Bumpless Transfer in Microgrids. IEEE Transactions on Smart Grid, 9(1), 416-425. doi:10.1109/tsg.2016.2580159Nguyen, H. K., Khodaei, A., & Han, Z. (2018). Incentive Mechanism Design for Integrated Microgrids in Peak Ramp Minimization Problem. IEEE Transactions on Smart Grid, 9(6), 5774-5785. doi:10.1109/tsg.2017.2696903Xiao, Z., Guerrero, J. M., Shuang, J., Sera, D., Schaltz, E., & Vásquez, J. C. (2018). Flat tie-line power scheduling control of grid-connected hybrid microgrids. Applied Energy, 210, 786-799. doi:10.1016/j.apenergy.2017.07.066Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). A Decentralized Robust Mixed H2/HH_{{2}}/ H_{{{\infty }}} Voltage Control Scheme to Improve Small/Large-Signal Stability and FRT Capability of Islanded Multi-DER Microgrid Considering Load Disturbances. IEEE Systems Journal, 12(3), 2610-2621. doi:10.1109/jsyst.2017.2716351Panda, S. K., & Ghosh, A. (2020). A Computational Analysis of Interfacing Converters with Advanced Control Methodologies for Microgrid Application. Technology and Economics of Smart Grids and Sustainable Energy, 5(1). doi:10.1007/s40866-020-0077-xZhang, L., Chen, K., Lyu, L., & Cai, G. (2019). Research on the Operation Control Strategy of a Low-Voltage Direct Current Microgrid Based on a Disturbance Observer and Neural Network Adaptive Control Algorithm. Energies, 12(6), 1162. doi:10.3390/en12061162Zhu, K., Sun, P., Zhou, L., Du, X., & Luo, Q. (2020). Frequency-Division Virtual Impedance Shaping Control Method for Grid-Connected Inverters in a Weak and Distorted Grid. IEEE Transactions on Power Electronics, 35(8), 8116-8129. doi:10.1109/tpel.2019.2963345Samavati, E., & Mohammadi, H. R. (2019). Simultaneous voltage and current harmonics compensation in islanded/grid-connected microgrids using virtual impedance concept. Sustainable Energy, Grids and Networks, 20, 100258. doi:10.1016/j.segan.2019.100258Shi, K., Ye, H., Song, W., & Zhou, G. (2018). Virtual Inertia Control Strategy in Microgrid Based on Virtual Synchronous Generator Technology. IEEE Access, 6, 27949-27957. doi:10.1109/access.2018.2839737Fathi, A., Shafiee, Q., & Bevrani, H. (2018). Robust Frequency Control of Microgrids Using an Extended Virtual Synchronous Generator. IEEE Transactions on Power Systems, 33(6), 6289-6297. doi:10.1109/tpwrs.2018.2850880Amoateng, D. O., Al Hosani, M., Elmoursi, M. S., Turitsyn, K., & Kirtley, J. L. (2018). Adaptive Voltage and Frequency Control of Islanded Multi-Microgrids. IEEE Transactions on Power Systems, 33(4), 4454-4465. doi:10.1109/tpwrs.2017.2780986Sopinka, A., & Pitt, L. (2013). British Columbia Electricity Supply Gap Strategy: A Redefinition of Self-Sufficiency. The Electricity Journal, 26(3), 81-88. doi:10.1016/j.tej.2013.03.003Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2018). Decentralized Sliding Mode Control of WG/PV/FC Microgrids Under Unbalanced and Nonlinear Load Conditions for On- and Off-Grid Modes. IEEE Systems Journal, 12(4), 3108-3119. doi:10.1109/jsyst.2017.2761792Gholami, S., Saha, S., & Aldeen, M. (2018). Robust multiobjective control method for power sharing among distributed energy resources in islanded microgrids with unbalanced and nonlinear loads. International Journal of Electrical Power & Energy Systems, 94, 321-338. doi:10.1016/j.ijepes.2017.07.012Mousazadeh Mousavi, S. Y., Jalilian, A., Savaghebi, M., & Guerrero, J. M. (2018). Autonomous Control of Current- and Voltage-Controlled DG Interface Inverters for Reactive Power Sharing and Harmonics Compensation in Islanded Microgrids. IEEE Transactions on Power Electronics, 33(11), 9375-9386. doi:10.1109/tpel.2018.2792780Fani, B., Zandi, F., & Karami-Horestani, A. (2018). An enhanced decentralized reactive power sharing strategy for inverter-based microgrid. International Journal of Electrical Power & Energy Systems, 98, 531-542. doi:10.1016/j.ijepes.2017.12.023Khayat, Y., Naderi, M., Shafiee, Q., Batmani, Y., Fathi, M., Guerrero, J. M., & Bevrani, H. (2019). Decentralized Optimal Frequency Control in Autonomous Microgrids. IEEE Transactions on Power Systems, 34(3), 2345-2353. doi:10.1109/tpwrs.2018.2889671Arcos-Aviles, D., Pascual, J., Marroyo, L., Sanchis, P., & Guinjoan, F. (2018). Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Transactions on Smart Grid, 9(2), 530-543. doi:10.1109/tsg.2016.2555245Alyazidi, N. M., Mahmoud, M. S., & Abouheaf, M. I. (2018). Adaptive critics based cooperative control scheme for islanded Microgrids. Neurocomputing, 272, 532-541. doi:10.1016/j.neucom.2017.07.027Buduma, P., & Panda, G. (2018). Robust nested loop control scheme for LCL‐filtered inverter‐based DG unit in grid‐connected and islanded modes. IET Renewable Power Generation, 12(11), 1269-1285. doi:10.1049/iet-rpg.2017.0803Batiyah, S., Sharma, R., Abdelwahed, S., & Zohrabi, N. (2020). An MPC-based power management of standalone DC microgrid with energy storage. International Journal of Electrical Power & Energy Systems, 120, 105949. doi:10.1016/j.ijepes.2020.105949Baghaee, H. R., Mirsalim, M., Gharehpetan, G. B., & Talebi, H. A. (2018). Nonlinear Load Sharing and Voltage Compensation of Microgrids Based on Harmonic Power-Flow Calculations Using Radial Basis Function Neural Networks. IEEE Systems Journal, 12(3), 2749-2759. doi:10.1109/jsyst.2016.2645165Benhalima, S., Miloud, R., & Chandra, A. (2018). Real-Time Implementation of Robust Control Strategies Based on Sliding Mode Control for Standalone Microgrids Supplying Non-Linear Loads. Energies, 11(10), 2590. doi:10.3390/en11102590California Carbon Market Watch: A Comprehensive Analysis of the Golden State’s Cap-and-Trade Program, Year One—2012–2013. 2014https://www.issuelab.org/resource/california-carbon-market-watch-a-comprehensive-analysis-of-the-golden-state-s-cap-and-trade-program-year-one-2012-2013.htmlExploring the Best Possible Trade-Off between Competing Objectives: Identifying the Pareto Fronthttps://pythonhealthcare.org/2018/09/27/93-exploring-the-best-possible-trade-off-between-competing-objectives-identifying-the-pTeekaraman, Y., Kuppusamy, R., & Nikolovski, S. (2019). Solution for Voltage and Frequency Regulation in Standalone Microgrid using Hybrid Multiobjective Symbiotic Organism Search Algorithm. Energies, 12(14), 2812. doi:10.3390/en12142812Zeng, Z., Li, H., Tang, S., Yang, H., & Zhao, R. (2016). Multi‐objective control of multi‐functional grid‐connected inverter for renewable energy integration and power quality service. IET Power Electronics, 9(4), 761-770. doi:10.1049/iet-pel.2015.0317Wu, Y., Guerrero, J. M., Vasquez, J. C., & Wu, Y. (2019). Bumpless Optimal Control over Multi-Objective Microgrids with Mode-Dependent Controllers. Energies, 12(19), 3619. doi:10.3390/en12193619Sedighizadeh, M., Esmaili, M., & Eisapour-Moarref, A. (2017). Voltage and frequency r

    A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles

    Full text link
    [EN] Electricity consumption patterns reveal energy demand behaviors and enable strategY implementation to increase efficiency using monitoring systems. However, incorrect patterns can be obtained when the time-series components of electricity demand are not considered. Hence, this research proposes a new method for handling time-series components that significantly improves the ability to obtain patterns and detect anomalies in electrical consumption profiles. Patterns are found using the proposed method and two widespread methods for handling the time-series components, in order to compare the results. Through this study, the conditions that electricity demand data must meet for making the time-series analysis useful are established. Finally, one year of real electricity consumption is analyzed for two different cases to evaluate the effect of time-series treatment in the detection of anomalies. The proposed method differentiates between periods of high or low energy demand, identifying contextual anomalies. The results indicate that it is possible to reduce time and effort involved in data analysis, and improve the reliability of monitoring systems, without adding complex procedures.Serrano-Guerrero, X.; Escrivá-Escrivá, G.; Luna-Romero, S.; Clairand, J. (2020). A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles. Energies. 13(5):1-23. https://doi.org/10.3390/en13051046S123135Hong, T., Yang, L., Hill, D., & Feng, W. (2014). Data and analytics to inform energy retrofit of high performance buildings. Applied Energy, 126, 90-106. doi:10.1016/j.apenergy.2014.03.052Ogunjuyigbe, A. S. O., Ayodele, T. R., & Akinola, O. A. (2017). User satisfaction-induced demand side load management in residential buildings with user budget constraint. Applied Energy, 187, 352-366. doi:10.1016/j.apenergy.2016.11.071Huang, Y., Sun, Y., & Yi, S. (2018). Static and Dynamic Networking of Smart Meters Based on the Characteristics of the Electricity Usage Information. Energies, 11(6), 1532. doi:10.3390/en11061532Lin, R., Ye, Z., & Zhao, Y. (2019). OPEC: Daily Load Data Analysis Based on Optimized Evolutionary Clustering. Energies, 12(14), 2668. doi:10.3390/en12142668Hunt, L. C., Judge, G., & Ninomiya, Y. (2003). Underlying trends and seasonality in UK energy demand: a sectoral analysis. Energy Economics, 25(1), 93-118. doi:10.1016/s0140-9883(02)00072-5Serrano-Guerrero, X., Escrivá-Escrivá, G., & Roldán-Blay, C. (2018). Statistical methodology to assess changes in the electrical consumption profile of buildings. Energy and Buildings, 164, 99-108. doi:10.1016/j.enbuild.2017.12.059Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection. ACM Computing Surveys, 41(3), 1-58. doi:10.1145/1541880.1541882Escrivá-Escrivá, G., Álvarez-Bel, C., Roldán-Blay, C., & Alcázar-Ortega, M. (2011). New artificial neural network prediction method for electrical consumption forecasting based on building end-uses. Energy and Buildings, 43(11), 3112-3119. doi:10.1016/j.enbuild.2011.08.008Serrano-Guerrero, X., Prieto-Galarza, R., Huilcatanda, E., Cabrera-Zeas, J., & Escriva-Escriva, G. (2017). Election of variables and short-term forecasting of electricity demand based on backpropagation artificial neural networks. 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). doi:10.1109/ropec.2017.8261630Jain, R. K., Smith, K. M., Culligan, P. J., & Taylor, J. E. (2014). Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Applied Energy, 123, 168-178. doi:10.1016/j.apenergy.2014.02.057Singh, S., & Yassine, A. (2018). Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting. Energies, 11(2), 452. doi:10.3390/en11020452Jota, P. R. S., Silva, V. R. B., & Jota, F. G. (2011). Building load management using cluster and statistical analyses. International Journal of Electrical Power & Energy Systems, 33(8), 1498-1505. doi:10.1016/j.ijepes.2011.06.034Shareef, H., Ahmed, M. S., Mohamed, A., & Al Hassan, E. (2018). Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers. IEEE Access, 6, 24498-24509. doi:10.1109/access.2018.2831917Crespo Cuaresma, J., Hlouskova, J., Kossmeier, S., & Obersteiner, M. (2004). Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy, 77(1), 87-106. doi:10.1016/s0306-2619(03)00096-5Janczura, J., Trück, S., Weron, R., & Wolff, R. C. (2013). Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling. Energy Economics, 38, 96-110. doi:10.1016/j.eneco.2013.03.013Angelos, E. W. S., Saavedra, O. R., Cortés, O. A. C., & de Souza, A. N. (2011). Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems. IEEE Transactions on Power Delivery, 26(4), 2436-2442. doi:10.1109/tpwrd.2011.2161621Milton, M.-A., Pedro, C.-O., Xavier, S.-G., & Guillermo, E.-E. (2018). Characterization and Classification of Daily Electricity Consumption Profiles: Shape Factors and k-Means Clustering Technique. E3S Web of Conferences, 64, 08004. doi:10.1051/e3sconf/20186408004Chicco, G. (2012). Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy, 42(1), 68-80. doi:10.1016/j.energy.2011.12.031Seem, J. E. (2005). Pattern recognition algorithm for determining days of the week with similar energy consumption profiles. Energy and Buildings, 37(2), 127-139. doi:10.1016/j.enbuild.2004.04.004Seem, J. E. (2007). Using intelligent data analysis to detect abnormal energy consumption in buildings. Energy and Buildings, 39(1), 52-58. doi:10.1016/j.enbuild.2006.03.033Li, X., Bowers, C. P., & Schnier, T. (2010). Classification of Energy Consumption in Buildings With Outlier Detection. IEEE Transactions on Industrial Electronics, 57(11), 3639-3644. doi:10.1109/tie.2009.2027926Capozzoli, A., Piscitelli, M. S., Brandi, S., Grassi, D., & Chicco, G. (2018). Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings. Energy, 157, 336-352. doi:10.1016/j.energy.2018.05.127Jokar, P., Arianpoo, N., & Leung, V. C. M. (2016). Electricity Theft Detection in AMI Using Customers’ Consumption Patterns. IEEE Transactions on Smart Grid, 7(1), 216-226. doi:10.1109/tsg.2015.2425222Fenza, G., Gallo, M., & Loia, V. (2019). Drift-Aware Methodology for Anomaly Detection in Smart Grid. IEEE Access, 7, 9645-9657. doi:10.1109/access.2019.2891315Araya, D. B., Grolinger, K., ElYamany, H. F., Capretz, M. A. M., & Bitsuamlak, G. (2017). An ensemble learning framework for anomaly detection in building energy consumption. Energy and Buildings, 144, 191-206. doi:10.1016/j.enbuild.2017.02.058Hayes, M. A., & Capretz, M. A. (2015). Contextual anomaly detection framework for big sensor data. Journal of Big Data, 2(1). doi:10.1186/s40537-014-0011-yCui, W., & Wang, H. (2017). A New Anomaly Detection System for School Electricity Consumption Data. Information, 8(4), 151. doi:10.3390/info8040151Fan, C., Xiao, F., Zhao, Y., & Wang, J. (2018). Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data. Applied Energy, 211, 1123-1135. doi:10.1016/j.apenergy.2017.12.005Cai, H., Shen, S., Lin, Q., Li, X., & Xiao, H. (2019). Predicting the Energy Consumption of Residential Buildings for Regional Electricity Supply-Side and Demand-Side Management. IEEE Access, 7, 30386-30397. doi:10.1109/access.2019.2901257Khan, I., Huang, J. Z., Masud, M. A., & Jiang, Q. (2016). Segmentation of Factories on Electricity Consumption Behaviors Using Load Profile Data. IEEE Access, 4, 8394-8406. doi:10.1109/access.2016.2619898Al-Jarrah, O. Y., Al-Hammadi, Y., Yoo, P. D., & Muhaidat, S. (2017). Multi-Layered Clustering for Power Consumption Profiling in Smart Grids. IEEE Access, 5, 18459-18468. doi:10.1109/access.2017.2712258Park, K.-J., & Son, S.-Y. (2019). A Novel Load Image Profile-Based Electricity Load Clustering Methodology. IEEE Access, 7, 59048-59058. doi:10.1109/access.2019.2914216Serrano-Guerrero, X., Siavichay, L.-F., Clairand, J.-M., & Escrivá-Escrivá, G. (2019). Forecasting Building Electric Consumption Patterns Through Statistical Methods. Advances in Emerging Trends and Technologies, 164-175. doi:10.1007/978-3-030-32033-1_16Li, Y., Zhang, H., Liang, X., & Huang, B. (2019). Event-Triggered-Based Distributed Cooperative Energy Management for Multienergy Systems. IEEE Transactions on Industrial Informatics, 15(4), 2008-2022. doi:10.1109/tii.2018.2862436Khalid, A., Javaid, N., Guizani, M., Alhussein, M., Aurangzeb, K., & Ilahi, M. (2018). Towards Dynamic Coordination Among Home Appliances Using Multi-Objective Energy Optimization for Demand Side Management in Smart Buildings. IEEE Access, 6, 19509-19529. doi:10.1109/access.2018.2791546Borovkova, S., & Geman, H. (2006). Analysis and Modelling of Electricity Futures Prices. Studies in Nonlinear Dynamics & Econometrics, 10(3). doi:10.2202/1558-3708.137

    Techno-Economic Assessment of Renewable Energy-based Microgrids in the Amazon Remote Communities in Ecuador

    Full text link
    This is the peer reviewed version of the following article: Clairand, J., Serrano-Guerrero, X., González-Zumba, A. and Escrivá-Escrivá, G. (2022), Techno-Economic Assessment of Renewable Energy-based Microgrids in the Amazon Remote Communities in Ecuador. Energy Technol., 10: 2100746, which has been published in final form at https://doi.org/10.1002/ente.202100746. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Several remote communities have limited electricity access and are mainly dependent on environmentally damaging fossil fuels. The installation of microgrid networks and green energy initiatives are currently addressing this issue. Thus, the techno-economic assessment of a microgrid that comprises photovoltaic arrays, a micro-hydro turbine, and diesel generation is proposed herein. Two scenarios are evaluated considering the inclusion or not of diesel generation. This model is performed in HOMER. The results demonstrate that the best option in economics is to invest in a PV/hydro/diesel microgrid, resulting in an net present cost of 2.33 M,andacostofenergyof0.194, and a cost of energy of 0.194 kWh(-1). Furthermore, to address diesel price uncertainties, a sensitivity analysis is carried out based on three different projected diesel prices.Clairand, J.; Serrano-Guerrero, X.; González-Zumba, A.; Escrivá-Escrivá, G. (2022). Techno-Economic Assessment of Renewable Energy-based Microgrids in the Amazon Remote Communities in Ecuador. Energy Technology. 10(2):1-13. https://doi.org/10.1002/ente.202100746S11310
    corecore